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Motivation

Curse of dimensionality: For problems that involve many degrees of
freedom, the dimension of the phase space blows up exponentially.

Dimension of the quantum state that describes a n-particle system
grows as exponentially in n. This can be problematic for many tasks,
such as

Performing quantum state tomography
Performing quantum state verification
Studying many-body Hamiltonian

Goal : find a large class of states S such that

Some of these tasks can be done efficiently.

If a state is in S, one can efficiently verify that fact.

The above features remain robust against imperfect
measurements/finite precision.
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Brief summary

I will propose a class of states over n particles, Sn that has the following
features.

One can verify that the state is in Sn with O(n)
measurement/computation time.

Any state in Sn is defined by a set of O(1)-particle density matrices.

State tomography/verification can be done with O(n)
measurement/computation time.
Small errors in the O(1)-particle density matrices don’t propagate too
much.(robust error bound)

The class includes highly entangled states(e.g., topological code,
quantum Hall system).
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Informational completeness

Setup: Suppose we are given a quantum state ρ describing n qubits. We
know some of its expectation values.

1 Tr(ρ) = 1.

2 ρ ≥ 0.

3 Tr(ρσi ) = 〈σi 〉, i ∈ I .

* I : some finite set.
Specifying ρ : Assign expectation values for all linearly independent
observables.(≈ 4n)
Such observables are informationally complete: their expectation
values completely determine the state.
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Informational completeness

Setup: Suppose we are given a quantum state ρ describing n qubits. We
know some of its expectation values.

1 Tr(ρ) = 1.

2 ρ ≥ 0.

3 Tr(ρσi ) = 〈σi 〉, i ∈ I .

* I : some finite set.
What if we do not specify all the expectation values of the linearly
independent observables? : The problem is inherently ill-defined.

Or, is it?
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Informational completeness of local observables

Sometimes, expectation values of local observables completely determine
the global state.

1 Product state : |ψ〉 = |0〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉.
2 Matrix product states :

∑
s1,···sn Tr(A

s1 · · ·Asn) |s1〉 ⊗ · · · ⊗ |sn〉
[Cramer et al. 2011]
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Matrix product states

For (injective) matrix product states, local observables can be
informationally complete.
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Matrix product states

For (injective) matrix product states, local observables can be
informationally complete.

ρ12, ρ23, · · · → MPS tomography algorithm→ Output

Output : MPS |ψ′〉 that is consistent with ρ12, ρ23, · · · with a certificate
showing that | 〈ψ′|ψreal〉| ≥ 1− ε. [Cramer et al. 2011]
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Takeaway message

Given a set of expectation values of local observables, there exists an
efficiently checkable condition that tells you whether they are
informationally complete.

Our result can be thought as a generalization of the result of
Cramer et al. to higher dimensional systems, but with an important
difference.

Cramer et al. appeals to the special structure of the MPS, but our
approach does not involve any global wavefunction at all.

Isaac H. Kim (PI) On the informational completeness of local observables January 15th, 2015 11 / 57



Takeaway message

Given a set of expectation values of local observables, there exists an
efficiently checkable condition that tells you whether they are
informationally complete.
Our result can be thought as a generalization of the result of
Cramer et al. to higher dimensional systems, but with an important
difference.

Cramer et al. appeals to the special structure of the MPS, but our
approach does not involve any global wavefunction at all.

Isaac H. Kim (PI) On the informational completeness of local observables January 15th, 2015 11 / 57



Setup
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Setup
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Question

For all sites k , we know the reduced density matrices over the
neighborhood of k.

k : Site

Nk : Neighborhood of k .

Question: If one can find a state ρ′ that is consistent with {ρkNk
}, is it

close to ρ?
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Main result(Colloquial version)

There exists a certificate ε({ρkNk
}) such that,

|ρ− ρ′|1 ≤ ε({ρkNk
}).

Efficiency : O(n) measurement/computation time.

Applicability : any 1D/2D gapped system assuming a certain form of
area law holds, but possibly more.

Both with and without topological order!

Robustness: if |ρkNk
− ρ′kNk

| = ε, there is an additional error term

which is O(nε log 1
ε ).
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Applications

Quantum state tomography

Quantum state verification

Possibly more?
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The plan

Recall our main result:

|ρ− ρ′|1 ≤ ε({ρkNk
})

1 Globally Computable Upper Bound : I will upper bound a trace
distance between ρ and ρ′ by a quantity that can be computed from
the global states.

2 Locally Computable Upper Bound : Using information inequalities, I
will introduce a new quantity that can be computed from local
reduced density matrices. This quantity will be an upper bound of the
GCUB.

3 I will show that the LCUB is small for many systems.
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Globally Computable Upper Bound : background

I (A : C |B) = S(AB) + S(BC )− S(B)− S(ABC ) is quantum conditional
mutual information.

I (A : C |B) ≥ 0.

[Lieb, Ruskai 1972]
*S(A) = −Tr(ρA log ρA) : entanglement entropy of A.
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Globally Computable Upper Bound : background

[Petz, 1984]
I (A : C |B) = 0

if and only if

ρABC = ρ
1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC .

* The precise form of the equation does not matter for the purpose of this
talk. What matters is the fact that the global state is completely
determined by its local reduced density matrices, if the conditional
mutual information is 0.
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Globally Computable Upper Bound : background

Suppose ρABC and σABC are locally consistent, i.e.,

ρAB = σAB , ρBC = σBC ,

and I (A : C |B)ρ = I (A : C |B)σ = 0.

ρABC = σABC = ρ
1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC .

If ρABC and σABC are conditionally independent, and their marginal
distributions over AB and BC are consistent, they are globally equivalent.
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Globally Computable Upper Bound

Colloquially : If ρABC and σABC are approximately conditionally
independent, i.e.,

I (A : C |B)ρ ≈ 0, I (A : C |B)σ ≈ 0

and ρAB = σAB and ρBC = σBC ,

ρABC ≈ σABC .

Theorem 1. If ρAB = σAB and ρBC = σBC ,

1

8
|ρABC − σABC |21 ≤

1

2
(I (A : C |B)ρ + I (A : C |B)σ).

* If ρAB ≈ σAB and ρBC ≈ σBC , there is an additional additive
contribution proportional to log(dimension).
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Globally Computable Upper Bound

Theorem 1. If ρAB = σAB and ρBC = σBC ,

1

8
|ρABC − σABC |21 ≤

1

2
(I (A : C |B)ρ + I (A : C |B)σ).

: ρABC and σABC are close to each other if

Their marginal distribution over AB and BC are the same, and

I (A : C |B)ρ ≈ 0 and I (A : C |B)σ.
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Locally Computable Upper Bound

Okay that is kind of cool. I 
guess you are trying to use 

this result to bound the trace 
distance between two states 

from its local reduced 
density matrices?  
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Locally Computable Upper Bound

But that is never going to 
work. You see, in order to 

compute the upper bound, 
you need to know the 

entropy of the global states.
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Locally Computable Upper Bound

I mean, let’s suppose, 
WLOG, A is a very large 

region like this.

A
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Locally Computable Upper Bound

… and B and C are chosen 
like this.

A B C
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Locally Computable Upper Bound

Remember the setup?

A B C
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Locally Computable Upper Bound

How do you propose to 
compute I(A:C|B), knowing 
only the density matrices 
over each sites and its 

neighbours?

A B C
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Locally Computable Upper Bound

Recall I(A:C|B) = S(AB) + 
S(BC) - S(B) - S(ABC)

A B C
I(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC)
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Locally Computable Upper Bound

S(BC) and S(B) can be 
computed easily from the 

given local density matrices.

A B C
I(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC)
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Locally Computable Upper Bound

The nontrivial part is the 
remaining term, S(AB)- 

S(ABC).

A B C
I(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC)
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Locally Computable Upper Bound

I will give you an upper 
bound on S(AB) - S(ABC) 

which can be computed from 
the given reduced density 

matrices.

A B C
I(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC)
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Locally Computable Upper Bound : Weak monotonicity

Strong subadditivity asserts that

S(AB) + S(BC )− S(B)− S(ABC ) ≥ 0

for any tripartite state ρABC .
Weak monotonicity asserts that

S(DE )− S(D) + S(EF )− S(F ) ≥ 0

for any tripartite state ρDEF .
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Locally Computable Upper Bound : Weak monotonicity

Weak monotonicity asserts that

S(DE )− S(D) + S(EF )− S(F ) ≥ 0

for any tripartite state ρDEF .

S(EF )− S(F ) ≥ S(D)− S(DE ).

Setting D = AB,E = C ,

S(CF )− S(F ) ≥ S(AB)− S(ABC ).
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LCUB ≥ GCUB

For any F, S(CF) - S(F) is 
larger or equal to S(AB)- 

S(ABC).

A B C
I(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC)
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LCUB ≥ GCUB

In particular, I can choose F 
as follows.

A B C F
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LCUB ≥ GCUB

But still, how do you know 
that S(CF) - S(F) +S(BC)-S(B) 

is small?

A B C F
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LCUB ≥ GCUB

You don’t. However, given a set of local 
reduced density matrices, we can 

easily check this condition. Further, 
there is a good reason to believe that 

the upper bound is close to 0 for 
gapped systems in 1D and 2D.

A B C F
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The good reason : strong area law

There is a general belief that if a quantum many-body system has a
constant energy gap between its ground state sectors and its first excited
state, entanglement entropy satisfies area law:

S(A) = a|∂A|D−1 + b|∂A|D−2 + · · · .

In particular, in 2D,
S(A) = a|∂A| − γ + o(1)

(Kitaev and Preskill, Levin and Wen 2006)

* The above assertion is a much stronger statement than this:

S(A) = O(|∂A|).
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The upper bound depends on the topology.

Plugging in the entanglement entropy formula,

CB F C
B

F B C F

CB B

F

F

C
B

B
F

F

B C B

F

F
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LCUB ≥ GCUB

Plugging in the entanglement 
entropy formula, we get the 

desired upper bound.

A B C F
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Bootstrapping the argument

Suppose two states are consistent over each sites and 
their neighbours.

A

B
C F
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Three key ideas

1 If ρAB ≈ σAB , ρBC ≈ σBC , I (A : C |B)ρ ≈ 0, and I (A : C |B)σ ≈ 0,
then ρABC ≈ σABC .

2 Independent of the size of A, there is an upper bound on I (A : C |B)
that can be computed from the local reduced density matrices.

3 The upper bound is likely to be small for many interesting systems,
e.g., gapped systems in 1D/2D.
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Application : Quantum state tomography/verification

1 Quantum state tomography : Estimate the local reduced density
matrices, find a state consistent with the local reduced density
matrices, and then check the locally computable upper bound. If it is
close to 0, we are done!

Disclaimer: Finding such a state may take a LONG time.

2 Quantum state verification : Estimate the local reduced density
matrices, and check the consistency with the target quantum state. If
the locally computable upper bound is close to 0, we are done!
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Summary

For a large class of interesting multipartite states, there exists a
locally checkable condition, under which the expectation values of
certain nonlocal observables are completely determined by the
expectation values of the local observables.

The condition is likely to be satisfied for generic gapped 1D/2D
systems.

For such systems, the number of measurement data that is
information-theoretically sufficient to estimate the state grows
moderately with the system size.
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Comments & Future direction

The technical part of this work is based on the strong subadditivity of
entropy and the concavity of von Neumann entropy.

Better bound using generalized entropies(as opposed to the von
Neumann entropy)?

Are there other implications of I (A : C |B) ≈ 0?
See 1410.0664(Fawzi and Renner), 1411.4921(Brandão et al.),
1412.4067(Berta et al.), and references therein.

The bound itself is applicable to any quantum states(assuming
quantum mechanics is right), and it becomes nontrivial under the
strong area law assumption.

Are there other interesting scenarios under which the bound becomes
nontrivial?

For tomographic application, our result does not provide a method to
explicitly write down the global state.

But do we really need to write down the global state when we know
that the local data determines the global state?
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Globally Computable Upper Bound : Proof Idea

Starting from a useful lemma:
Lemma 1. (Kim 2013)

1

8
|ρ− σ|21 ≤ S(

ρ+ σ

2
)− S(ρ) + S(σ)

2
,

we can show

1

8
|ρABC − σABC |21 ≤ S(

ρABC + σABC
2

)− S(ρABC ) + S(σABC )

2
.

By SSA,

S(
ρABC + σABC

2
) ≤ S(AB) ρ+σ

2
+ S(BC ) ρ+σ

2
− S(B) ρ+σ

2
.

S(AB) ρ+σ
2

= S(AB)ρ = S(AB)σ, and a similar story for BC , B.
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The upper bound depends on the operation.

Plugging in the entanglement entropy formula,

CB F C
B

F B C F

CB B

F

F

C
B

B
F

F

B C B

F

F

Filling the 
bulk

Closing the 
loop
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Local consistency vs. global consistency depends on γ and
global topology

If γ = 0, an overlapping set of local reduced density matrices
completely determine the global state for any compact manifold.

If γ 6= 0, an overlapping set of local reduced density matrices
completely determine the reduced density matrix over any region that
does not contain any logical operator.

In particular, an overlapping set of local reduced density matrices
completely determine the global state on a sphere.
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